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Abstract

We present a coupled level set/volume-of-fluid method for computing growth and collapse of vapor bubbles. The

liquid is assumed incompressible and the vapor is assumed to have constant pressure in space. Second order algorithms

are used for finding ‘‘mass conserving’’ extension velocities, for discretizing the local interfacial curvature and also for

the discretization of the cell-centered projection step. Convergence studies are given that demonstrate this second order

accuracy. Examples are provided that apply to cavitating bubbles.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper describes a numerical model for growth and collapse of vapor bubbles using a coupled level

set and volume-of-fluid (CLSVOF) method. The applications which motivate this work are ship hydro-

dynamics, where one wants to measure the effects of an underwater explosion near a ship [7,33], and

thermal ink-jet devices where a vapor bubble is created which ejects ink [14].
Previous work in this area fall in the class of boundary integral methods [7,36], level set methods

[9,16,28], volume-of-fluid methods [11], marker particle methods [10], front tracking methods [20], and

front capturing methods [33].

Each of the above referenced methods has advantages and disadvantages. Boundary integral methods

[7,36] discretize only the interface separating liquid and vapor, making these methods very efficient. On the

other hand, the boundary integral approach assumes that the solution is governed by potential flow in each

fluid; therefore, boundary integral methods are limited in how they model viscosity. Also, since the

boundary integral method is a Lagrangian approach, every time the interface merges or splits, one must
implement a complicated surgery in order to continue the computation [7,31]. The following Eulerian based
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methods [9,11,16,20,28,33], discretize the whole computational domain. These methods are applicable to

flows with complex fluid interfaces and other general situations. Unfortunately, all of these Eulerian based

schemes use a first order treatment at the liquid vapor interface, which necessitates a finer grid; thus de-

grading efficiency.

Remarks:

• There have been recent developments for second order two-fluid level set methods in which both fluids

are handled as incompressible [18]. It should be noted though, that the method proposed by Helenbrook

et al. [18] was not applied to flows in which the interface developed points or cusps or in which there was

interfacial merging or splitting.

• The SUMMAC method [10] uses second order methods for treating the free surface boundary condition

for the computation of finite amplitude water waves. Nonetheless, the SUMMAC method is not second

order accurate overall since the temporal derivative is approximated using a first order method. Addi-
tionally, the SUMMAC method was not designed for complicated flows (e.g., wave breaking) and the

SUMMAC method does not include surface tension.

Our method represents an advance in methodology by ‘‘robustly’’ computing free surface flows to

second order accuracy. We shall demonstrate overall second order accuracy before and after a change in

interfacial topology.

We attain overall second order accuracy by making sure that the following components of our dis-

cretization are done with second order accuracy:

• Second order Runge–Kutta time discretization for the momentum equations.
• Coupled level set and volume-of-fluid advection; we shall use second order operator split (Strang-split-

ting) advection algorithms for both the level set function and the volume fractions [30].

• The interfacial curvature at the zero level set shall be computed to second order accuracy. Our discret-

ization for curvature is based on discretization described by Helmsen et al. [19] for the application of

photolithography.

• The Dirichlet pressure boundary condition at the free surface shall be enforced to second order accuracy.

Our discretization of this boundary condition is based on the discretization described by Gibou et al. [17]

for solving the Poisson equation in irregular domains. We remark, that the matrix system that results

Fig. 1. Diagram of where the discretely divergence-free face-centered velocity field UADV, level set function / and volume-of-fluid

function F are located in relation to the computational grid and the physical boundary.
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from applying the methodology in [17] is symmetric; thus this system can be ‘‘robustly’’ solved using a

preconditioned conjugate gradient method for any free surface configuration.

• We shall introduce a new velocity extension procedure for creating second order, mass conserving exten-

sion velocities.
Besides introducing a new numerical method for ‘‘robustly’’ treating interfacial flows to second order

accuracy, we also introduce a new procedure for carrying out the ‘‘approximate’’ projection step. In our

algorithm, the discrete vector field to be projected is located at cell centers, but the projected vector field is

located at face centers (‘‘MAC’’ grid locations). This allows us to accurately implement a ‘‘cell-centered’’

projection step while making it convenient to implement already existing methods for cell-centered implicit

viscous solves, second order Cartesian grid methods, parallelization and adaptive mesh refinement.

Background information regarding cell-centered projection versus node based projection and cell-centered

velocity field versus face-centered velocity field can be found in [2,3,21,22,26].

2. Governing equations

We are given two fluids, liquid and vapor. The liquid is assumed constant density and incompressible,

and the vapor is assumed to have zero density and constant pressure in space (but not necessarily in time).

Without loss of generality, we shall assume that the liquid density is one. In this paper, we shall also assume

that the viscosity is zero in both the liquid and vapor.
In the liquid we have:

U t þ Fx þ G y ¼ �rp þH ; ð1Þ

r �U ¼ 0: ð2Þ

F ¼ u2

uv

� �
; G ¼ uv

v2

� �
:

Fig. 2. The distances d assigned to points A, F , and E, respectively, are j �AABj, j �FFGj and j �EEH j.
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In the vapor, we assume the pressure pðtÞ is constant in space. For example Szymczak et al. [33] used the

following model for an expanding and collapsing adiabatic vapor bubble:

pvaporðtÞ ¼ p0
V ð0Þ
V ðtÞ

� �c

; ð3Þ

where V ðtÞ is the volume of the bubble. The position of the free surface is updated via the level set equation

/t þU � r/ ¼ 0; ð4Þ

where / is the level set function which is positive in the liquid and negative in the vapor. The governing

equation for the level set function (4) states that / remains constant on particle paths; i.e., if the zero level

set is initialized as the free-surface between the liquid and vapor, then the zero level set will always

represent the free-surface. From the level set function, one can enforce second order Dirichlet pressure

boundary conditions at the free surface. The vapor viscosity lvapor is assumed to be zero. The free surface

boundary conditions are enforced by specifying the following pressure boundary condition at the free

surface:

pðx; tÞ ¼ pvaporðtÞ � cj þ 2lliquidðDliquid � nÞ � n;

where j is the local mean curvature. H represents the force due to gravity H ¼ ð0; gÞ, lliquid is the liquid

viscosity (which we shall assume is zero), and Dliquid is the rate of deformation tensor for liquid.

3. CLSVOF free surface representation

The free surface is represented through a ‘‘coupled level set and volume-of-fluid’’ (CLSVOF) method. In

addition to solving the level set equation (4), we shall also solve the following equation for the volume-of-

fluid function F :

Ft þU � rF ¼ 0:

At t ¼ 0, F is initialized in each computational cell Xij,

Xij ¼ ðx; yÞ jxi
�

6 x6 xiþ1 and yj6 y6 yjþ1

�
;

to be,

Fij ¼
1

DxDy

Z
Xij

Hð/ðx; y; 0ÞÞdxdy:

Here, Dx and Dy are defined as xiþ1 � xi and yiþ1 � yi, respectively, and Hð/Þ is the Heaviside function,

Hð/Þ ¼ 1 / P 0;
0 otherwise:

�

The discrete level set function /n
i;j and discrete volume fraction function F ni;j are located at cell centers (see

Fig. 3). The motion of the free surface is determined by the MAC (face-centered) velocities derived from the
momentum equation. The discrete MAC velocity field is defined at cell faces uiþ1=2;j and vi;jþ1=2, and satisfies

the discrete continuity condition at every point in the liquid,

DMACU ¼ uiþð1=2Þ;j � ui�ð1=2Þ;j

Dx
þ vi;jþð1=2Þ � vi;j�ð1=2Þ

Dy
¼ 0:
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Details for the update of the level set function / and the volume fractions F are given in [30] and in

Appendix A below.

The level set function / and the volume fractions F are coupled as follows:

• The normals used in the volume-of-fluid reconstruction step are determined from the level set function.

• The level set function is used to ‘‘truncate’’ the volume fractions; the truncation step removes spurious

volumes (‘‘flotsam’’), generally created by round off error, that exist more than one grid cell length from
the zero level set.

• The volume fractions are used, together with the slopes from the level set function, to construct a ‘‘volume-

preserving’’ distance function along with providing ‘‘closest point’’ information to the zero level set.

• The volume fractions are used to express the interfacial curvature to second order accuracy (see Section

5.5). We do not use the level set function for finding the curvature because our level set reinitialization

step is only second order accurate; the curvature as computed from the level set function will not provide

the second order accuracy that is provided directly from the volume fractions.

We remark, that there are possible alternative, higher order, representations of the interface [12,15]. We
point out though, that the accuracy of our computations are limited by the order of accuracy of our

treatment of the free surface boundary conditions (which is second order); not by the accuracy of our in-

terface representation. Our results in Section 7 bare this out. We demonstrate second order accuracy before

and after pinch-off for complicated interfacial flows in which only first order methods have been applied

previously. We also show that we conserve mass to a fraction of a percent for all of our computations.

4. Runge–Kutta time discretization for momentum equations

Our discretization procedure for approximating (1) is based on the ‘‘projection method’’ (see e.g. [5,6]).

Given UMAC;n, /n, F n and rpn, we update using the following second order discretization:

Fig. 3. Location of level set function /, volume-of-fluid function F and MAC velocities in relation to the computational grid.
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1. Predict new position of the interface, /nþ1;ð0Þ and F nþ1;ð0Þ, using UMAC;n and the algorithm described in

Section 3.

2. Runge–Kutta solve for predicting velocities:

U	 �Ac
f ðUMAC;nÞ
Dt

¼ �LðUMAC;nÞ � rpn þHn; ð5Þ

where L represents high order upwind conservative discretization of the nonlinear terms. The operator

Ac
f represents the interpolation of theMAC, face-centered, velocity field to a cell-centered velocity field.

3. Projection step:

V 
 U	 �Ac
f ðUMAC;nÞ
Dt

þrpn;

UMAC;nþ1;ð0Þ �UMAC;n

Dt
¼ P/nðVÞ;

rpnþ1;ð0Þ ¼ V �Ac
f

UMAC;nþ1;ð0Þ �UMAC;n

Dt

 !
:

ð6Þ

4. Update new position of the interface, /nþ1 and F nþ1, using 1
2
ðUMAC;n þUMAC;nþ1;ð0ÞÞ and the algorithm

described in Section 3.

5. Runge–Kutta solve for updated velocities:

U	 �Ac
f ðUMAC;nÞ
Dt

¼ �LðUMAC;nþ1;ð0ÞÞ � rpnþ1;ð0Þ þHnþ1;ð0Þ:

6. Projection step:

V 
 U	 �Ac
f ðU

nÞ
Dt

þrpnþ1;ð0Þ;

UMAC;nþ1;ð1Þ �UMAC;n

Dt
¼ P/nþ1;ð0Þ ðVÞ;

rpnþ1 ¼ V �Ac
f

UMAC;nþ1;ð1Þ �UMAC;n

Dt

 !
:

ð7Þ

7. Runge–Kutta step:

UMAC;nþ1 ¼ 1

2
UMAC;nþ1;ð0Þ	

þUMAC;nþ1;ð1Þ
:
Remarks:

• The above method corresponds to a second order ‘‘TVD preserving’’ [27] Runge–Kutta method.

• The projection steps (6) and (7) decompose the cell-centered velocity field V into a divergence free face-

centered vector field Vd and gradient of a scalar rp:

Vd þrp ¼ Af
cðVÞ;

r � rp ¼ r �Af
cðVÞ;

Vd ¼ Af
cðVÞ � rp:

ð8Þ
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The elliptic Eq. (8) is solved using the preconditioned conjugate gradient method. Second order (see

Section 5.3 and [17]) Dirichlet pressure boundary conditions are given at the zero level set of /.

5. Spatial discretization

We describe the discretization for the face/cell interpolation operators, Ac
f and Af

c, nonlinear terms, L
(5), projection step P/ (6) and (7), second order, volume conserving, velocity extension from the liquid into
the gas, and curvature.

5.1. Face/cell interpolation operators

The face to cell interpolation operator,Ac
f , initializes a cell-centered velocity field from a specified MAC-

located velocity field:

uij ¼
uMAC
iþ1=2;j þ uMAC

i�1=2;j

2
;

vij ¼
vMAC
i;jþ1=2 þ vMAC

i;j�1=2

2
:

The cell-to-face interpolation operator, Af
c, initializes a face-centered (MAC-located) velocity field from

a specified cell-centered velocity field:

uMAC
iþ1=2;j ¼

1

2
ðui;j þ uiþ1;jÞ;

vMAC
i;jþ1=2 ¼

1

2
ðvi;j þ vi;jþ1Þ: ð9Þ

5.2. Discretization of nonlinear terms

The term,

Fx þ Gy � ðr �UÞU

is discretized as

LðUMACÞij ¼
ðFiþ1=2;j � Fi�1=2;jÞ=Dxþ ðGi;jþ1=2 � Gi;j�1=2Þ=Dy � ðDUMACÞijUcell

ij

1� ðDt=2ÞðDUMACÞij
; ð10Þ

where Ucell ¼ Ac
fðUMACÞ, ðDUMACÞij is the discrete divergence operator,

ðDUMACÞij ¼
uMAC
iþ1=2;j � uMAC

i�1=2;j

Dx
þ
vMAC
i;jþ1=2 � vMAC

i;j�1=2

Dy
; ð11Þ

and,

Fiþ1=2;j ¼
uMAC
iþ1=2;juiþ1=2;j

uMAC
iþ1=2;jviþ1=2;j

 !
; Gi;jþ1=2 ¼

vMAC
i;jþ1=2ui;jþ1=2

vMAC
i;jþ1=2vi;jþ1=2

 !
: ð12Þ
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The quantities uiþ1=2;j, viþ1=2;j, ui;jþ1=2 and vi;jþ1=2 are constructed from Ucell using upwind and slope-

limited differencing; e.g.,

ui;jþ1=2 ¼
ucellij þ Dy

2
ucelly;ij if vMAC;i;jþ1=2 > 0;

ucellijþ1 �
Dy
2
ucelly;ijþ1 if vMAC;i;jþ1=2 < 0:

(

The slopes ucelly;ijDy are computed using second order Van Leer slope limiting [34],

ucelly;ijDy ¼
Sminð2jucelli;jþ1 � ucelli;j j; 2jucelli;j � ucelli;j�1j; 12 jucelli;jþ1 � ucelli;j�1jÞ if s > 0;
0 otherwise;

�

where

S ¼ signðucelli;jþ1 � ucelli;j�1Þ

and

s ¼ ucelli;jþ1

�
� ucelli;j



ucelli;j

�
� ucelli;j�1



:

Remark. The term ðDUMACÞij appearing in (10) is discretely zero at every point in the liquid and also at

‘‘almost every’’ point in the extended liquid region. For extreme cases, e.g., a vapor region containing a

single point, it is impossible to construct divergence free extension velocities at these points; necessitating
the terms involving ðDUMACÞij. The Dt=2ðDUMACÞij term in the denominator of (10) results from handling

the latter part of ðr �UÞU , U , semi-implicitly.

5.3. Cell-centered projection step

The projection step is described analytically by (8). The discrete projection has the following steps:

1. We are given a discrete cell-centered vector field V ij.

2. Define VMAC 
 Af
cðVÞ see (9).

3. Solve the following discrete system using preconditioned conjugate gradient method:

DGp ¼ DV MAC; ð13Þ

D represents the discrete divergence operator,

DV MAC ¼
uMAC
iþ1=2;j � uMAC

i�1=2;j

Dx
þ
vMAC
i;jþ1=2 � vMAC

i;j�1=2

Dy

and G ¼ ðGx;GyÞ represents the discrete gradient operator,

ðGxpÞiþ1=2;j ¼
piþ1;j � pij

Dx
;

ðGypÞi;jþ1=2 ¼
pi;jþ1 � pij

Dy
:

In cells where the level set function changes sign, the gradient operator is modified in order to enforce

second order Dirichlet boundary conditions at the vapor/liquid boundary. We treat the boundary condition
similarly as was done in [17]. Please refer to Fig. 4. Suppose /ij < 0 and /iþ1;j > 0; using linear interpo-

lation, one can find the position of the zero level set to be ðxij þ ð1� hÞDx; yjÞ where 0 < h < 1. In order to
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avoid difficulties with numerical round-off, we place a lower bound on h so that 10�3 < h < 1. The resulting

modification to ðGxpÞiþ1=2;j becomes

ðGxpÞiþ1=2;j ¼
piþ1;j � pv

hDx
:

The vapor pressure is

pv ¼ pvaporðtÞ � cjIðF Þ; ð14Þ

where the interface curvature jI is determined directly from the volume fractions F . The discretization of

the curvature is described in Section 5.5.

4. Extend uMAC into the vapor; see Section 5.4.
Remark. Our algorithm is distinct from previous cell-centered, collocated, projection algorithms (see, e.g.

[2]), since we project a cell-centered quantity but store the MAC velocities, UMAC;n, from time step to time

step. This eliminates the ‘‘diffusive’’ problems encountered by repeatedly averaging the MAC velocities (see

[22]) since we are able to (a) use UMAC;n when discretizing the nonlinear terms (12) and (b) the errors as-

sociated with averaging the MAC velocities are not accumulated over time. In Results, we demonstrate

single fluid computational results which are just as accurate as ‘‘node-based’’ projection algorithms. Our

two-phase computations are shown to be second order accurate. In the future, the fact that we project the

cell-centered quantity V (6) will make it convenient for us to include viscous effects implicitly using existing
second order Crank–Nicolson solvers.

5.4. MAC velocity extension

We describe the extension of uMAC below. For a background of prior discretizations for this step,

we refer the reader to [9–11,16]. Our method is distinct from existing methods for extending the MAC

Fig. 4. Diagram of five-point stencil near an irregular boundary. The factor h represents the fraction of the distance of the line

connecting the center of the stencil to a stencil point outside of the liquid region.

118 M. Sussman / Journal of Computational Physics 187 (2003) 110–136



velocities in that it is second order and ‘‘volume conserving’’. The methods presented in [9,11,16] are all first

order accurate; the SUMMAC method [10] describes a second order method for velocity extension, but

their extension velocities are not discretely divergence free.

The extension algorithm consists of two steps: (1) extrapolation, (2) projection.

Step (1) is the extrapolation step where we initialize second order ‘‘non-volume-conserving’’ extension

velocities for uMAC. We describe the part that initializes uMAC;extend
iþ1=2;j below; the case for vMAC;extend

i;jþ1=2 follows

accordingly:

1. For each point where 0 > /iþ1=2;j 
 ð1=2Þð/ij þ /iþ1;jÞ > �KDx, we already know the corresponding
closest point on the interface xI;iþ1=2;j 
 ð1=2ÞðxI ;ij þ xI;iþ1;jÞ. This information is derived during the

CLSVOF reinitialization step (see Section A.1).

2. Construct a 5� 5 stencil for uMAC about the point xI ;iþ1=2;j. A point xi0þ1=2;j0 in the stencil is tagged as

‘‘valid’’ if /i0 ;j0 P 0 or /i0þ1;j0 P 0. A diagram of how this 5� 5 stencil is created for extending the hor-

izontal velocity uMAC is shown in Fig. 5. Please see Fig. 6 for a diagram portraying the 5� 5 stencil

used for constructing the vertical extension velocities vMAC;extend
i;jþ1=2 .

3. Find the weighted linear least squares best fit polynomial uMAC;fit
iþ1=2;j ¼ aðx� xI ;iþ1=2;jÞ þ bðy � yI ;iþ1=2;jÞ þ c

from the valid velocities in the 5� 5 stencil. The weights are larger for those points near xI ;iþ1=2;j.
4.

uMAC;extend
iþ1=2;j ¼ aðxiþ1=2;j � xI;iþ1=2;jÞ þ bðyiþ1=2;j � yI;iþ1=2;jÞ þ c:

Step (2) is the projection step where the newly extended velocity field uMAC;extend is ‘‘projected’’ onto a

divergence free velocity field. We solve (13)

DGpextend ¼ DuMAC;extend;

for those points where �KDx < /ij < 0. Homogeneous Neumann conditions are applied at faces where the

level set function changes sign; e.g., pextendiþ1;j ¼ pextendi;j if /iþ1;j P 0 and /i;j < 0. Homogeneous Dirichlet

Fig. 5. Diagram highlighting the valid points in the 5� 5 stencil used for constructing the horizontal extension velocities.
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boundary conditions are enforced at the / ¼ �KDx level set. If / > �KDx throughout the vapor region,

then homogeneous Dirichlet boundary conditions are enforced at the points where /ij is a local minimum
(i.e., /ij6/i
1;j and /ij6/i;j
1).

5.5. Curvature discretization

The curvature on the free surface is computed to second order accuracy directly from the volume

fractions [19]. Previous work in this area include that by Chorin [13], Poo and Ashgriz [23], Aleinov and

Puckett [1], Williams et al. [35] and more recently, using ‘‘PROST’’, Renardy et al. [25]. The method we

use here is explicit, localized, and can be shown through Taylor series expansion to be second order

accurate for r � z or three-dimensional coordinate systems. The method is based on reconstructing the

‘‘height’’ function directly from the volume fractions [19]. Without loss of generality, we assume that the

free surface is oriented more horizontal than vertical. The orientation of the free surface is determined

from the level set function since n ¼ r/=jr/j. A 3� 7 stencil of volume fractions is constructed about
cell ði; jÞ (see Fig. 7). The three vertical sums, Fi0 , i0 ¼ i� 1; i; iþ 1 are exact integrals of the height

function hðxÞ (up to a constant); i.e., Fi ¼
R xiþ1=2

xi�1=2
hðxÞdxþ CðjÞ. It can be shown that ðFiþ1 � Fi�1Þ=Dx is a

second order approximation to h0ðxiÞ and that ðFiþ1 � 2Fi þ Fi�1Þ=Dx2 is a second order approximation to

h00ðxiÞ. A slightly more complicated procedure is used in axisymmetric coordinate systems; the height

function hðrÞ is assumed to have the form ar2 þ br þ c. The integral of rhðrÞ is related with

Fi0 ; i0 ¼ i� 1; i; iþ 1 in order to solve for the three unknowns a, b and c. For vertically oriented in-

terfaces in axisymmetric coordinate systems, the Fj0 represent the integrals of the square of the height

function hðzÞ (up to a constant): Fj0 ¼ p
R zj0þ1=2

zj0�1=2
ðhðzÞÞ2 dzþ CðiÞ. In other words, ðFjþ1 � Fj�1Þ=Dx is a

second order approximation to dhðzÞ2=dz and ðFjþ1 � 2Fj þ Fj�1Þ=Dx2 is a second order approximation to

d2ðhðzÞ2Þ=dz2. The resulting curvature is obtained directly from the height function (whether it be hðrÞ,
hðzÞ or hðx; yÞ).

Fig. 6. Diagram highlighting the valid points in the 5� 5 stencil used for constructing the vertical extension velocities.
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This procedure for finding curvature will return a second order approximation to the curvature on the

interface passing through cell ði; jÞ located at x ¼ ðiþ 1=2ÞDx (horizontal orientation) or y ¼ ðjþ 1=2ÞDy
(vertical orientation). In order to find jIðF Þ to second order accuracy (14), we have two different cases when

the level set function changes sign between cells ði; jÞ and ðiþ 1; jÞ: (1) the interface is orientated vertically,

in which case

jI ¼
jij h < 1=2;
jiþ1;j otherwise;

�

or (2) the interface is orientated horizontally, in which case

jI ¼ ð1� hÞjij þ hjiþ1;j:

In Tables 1 and 2, we display the average error and maximum error for the case of a sphere in axi-

symmetric and three-dimensional coordinate systems, respectively.

Fig. 7. The volume fractions in the following 3� 7 stencil are used to approximate curvature ‘‘A’’ to second order accuracy. In order

to compute curvature ‘‘B’’ to second order accuracy, one must linearly interpolate between curvature ‘‘A’’ and curvature ‘‘C’’.

Table 1

Convergence study for computing curvatures from volume fractions of a unit sphere in axisymmetric geometry

Dx Max. error Avg. error

1/16 0.0104 0.0037

1/32 0.0024 0.0009

1/64 0.0006 0.0002

The physical domain size is 2� 4. Dx is the mesh spacing which is 2=nx where nx is the number of cells in the x direction. For all our
tests, Dx ¼ Dy.
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5.6. Time step

The time step Dt at time tn is determined by restrictions due to the CFL condition, gravity, and surface

tension [8,32]

Dt < min
i;j

ffiffiffiffiffiffiffiffi
1

4pc

s
Dx3=2;

2Dx

j un j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j un j2 þ4FnDx

p
 !

;

where

Fn ¼ j � Gpn þH j:

The second time step constraint is justified through the following simplified analysis. If we consider the

simplified equation:

ut ¼ F ;

Table 2

Convergence study for computing curvatures from volume fractions of a unit sphere in three-dimensional geometry

Dx Max. error Avg. error

1/8 0.094 0.0125

1/16 0.050 0.0036

1/32 0.010 0.0009

The physical domain size is 4� 4� 4. Dx is the mesh spacing which is 4=nx where nx is the number of cells in the x direction. For all
our tests, Dx ¼ Dy ¼ Dz.

Fig. 8. The volume-of-fluid flux is represented by the fraction of total fluid being advected across the right face of the highlighted cell.

The total amount of fluid being advected across the right face has volume uDtDy. The flux is represented by the fraction of ‘‘dark’’

material which is about 1/3 in this example.
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uðtnÞ ¼ un;

then the solution at tnþ1 is

uðtnþ1Þ ¼ un þ DtF :

We require a ‘‘CFL’’ type condition,

uðtnþ1ÞDt < Dx:

The resulting equation for Dt is

ðun þ DtF ÞDt < Dx:

6. Single fluid test

One obstacle to a cell-centered projection step is the ‘‘diffusive’’ problems encountered when one re-

covers the cell-centered velocity by averaging the projected MAC velocities [22]. In this work, we carry the

MAC velocities from time step to time step in order to avoid these diffusive problems. We test the diffu-

siveness of our cell-centered projection algorithm on an inviscid horizontal shear layer problem [4]. The

problem is computed in a doubly periodic 1� 1 box with initial data given by:

u ¼ tanhð30ðy � 1=4ÞÞ for y6 1=2;
tanhð30ð3=4� yÞÞ for y > 1=2;

�

v ¼ ð1=20Þ sinð2pxÞ:

In Fig. 10, we display the vorticity contours for the 256� 256 grid case. In Fig. 11, we plot the kinetic
energy,

K ¼ ð1=2Þ
Z

u � udxdy

for the 256� 256 grid case. These results are to be compared with those in [4]; we see that the error in

kinetic energy for our results is only about 25% worse than [4].

Fig. 9. The volume-of-fluid reconstructed interface consists of the piecewise linear line segments along with the portions of the cell

boundaries that make up the difference between neighboring line segments. This is an exaggerated diagram. The magnitude of the

discontinuity between neighboring segments is OðDx2Þ.
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7. Two-phase flow tests

In this section we test the order of accuracy of our algorithm on two problems, (1) standing wave

problem and (2) rising inviscid gas bubble problem. The first problem does not include surface tension

effects whereas the second problem does. Since we do not know the exact solutions for these problems, we

measure the relative error between succeeding grid resolutions. The error for the position of the free surface

is measured as,

EðtÞ ¼
X
i;j

Z
Xij

jHð/fðtÞÞ � Hð/cðtÞÞjdx: ð15Þ

Here, /c is the level set function from a coarser computation and /f is the level set function from the refined

computation. The relative error for the velocity is measured by the following equations:

Eu;L1ðtÞ ¼
X

i;j;/c;ij>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuf ;ij � uc;ijÞ2 þ ðvf ;ij � vc;ijÞ2

q
DxDy; ð16Þ

Eu;maxðtÞ ¼ max
i;j;/c;ij>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuf;ij � uc;ijÞ2 þ ðvf;ij � vc;ijÞ2

q
: ð17Þ

Fig. 10. Vorticity contours for smooth shear layer on 256� 256 grid.
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For the standing wave problem, the free surface at t ¼ 0 is described by the equation

y ¼ ð1=4Þ þ � cosð2pxÞ;

where � ¼ 0:025. The gravitational force is H ¼ ð0;�2pÞ. The computational domain is a 1/2 by 1/2 box

with axisymmetric boundary conditions at x ¼ 0 and x ¼ 1=2 and solid wall boundary conditions at y ¼ 0.

Fig. 11. Kinetic energy versus time for smooth shear layer; 256� 256 grid case.

Fig. 12. Amplitude at x ¼ 0 versus time for standing wave problem.
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In Fig. 12 we compare the amplitude (at x ¼ 0) for three different grid resolutions, Dx ¼ 1=64, Dx ¼ 1=128
and Dx ¼ 1=256. The time step for each case is Dt ¼ 0:02, Dt ¼ 0:01 and Dt ¼ 0:005. In Table 3, we show the

relative error between the three graphs (06 t6 10). In Table 4, we show the Eu;L1 and Eu;max errors for the

velocity field at t ¼ 10:0.
For the axisymmetric inviscid bubble rise problem, the free surface at t ¼ 0 is a unit spherical bubble

centered at ð0; 2Þ in a computational domain with dimensions of 3� 6. The surface tension coefficient is

c ¼ 0:005, and the gravitational force is H ¼ ð0;�1Þ. These parameters correspond to those used for a

convergence study by Sussman and Puckett [30]. The only difference between our problem setup and the

setup in [30] is that we assume solid wall boundary conditions here as opposed to outflow boundary

conditions. In Fig. 13 we display the results of our computations for the bubble rising as it breaks up. In

Tables 5 and 6, we measure the relative errors for the interface and velocity field for grid resolutions ranging

from 32� 64 to 128� 256 (Dt ranges from 0.005 to 0.00125). In Table 7, we show the maximum mass
fluctuation for 06 t6 1:75. As shown in the tables, we obtain first order accuracy when measuring the error

using Eu;max (prior to pinch-off) and second order accuracy when using Eu;L1; these errors are considerably

lower than the results reported by Sussman and Puckett [30] using the ‘‘continuum’’ approach. In fact, the

errors on the 128� 256 grid using our recent algorithm correspond to those on the 256� 512 grid used

before; this corresponds to a factor of 8 speed-up.

8. Bubble oscillation and collapse

In this section, we test our algorithm on problems in which the pressure inside the vapor obeys the

relation for an adiabatic perfect gas (3),

pvaporðtÞ ¼ p0
V ð0Þ
V ðtÞ

� �c

; ð18Þ

where V ðtÞ is the volume of the vapor and c ¼ 1:4. In our computations, the volume is obtained directly
from the volume fractions. At each time step, we identify the existing vapor bubble regions, V1ðtÞ; . . . ; VN ðtÞ.

Table 3

Convergence study: relative error between coarse grid computations with cell size Dxcoarse and fine grid computations with cell size Dxfine
for amplitude at x ¼ 0 for standing wave problem

Dxcoarse Dxfine Max. relative error Avg. relative error

1/64 1/128 6.7E) 4 18.0E) 5

1/128 1/256 2.2E) 4 4.5E) 5

The physical domain size is 1=2� 1=2. Dx is the mesh spacing which is 1=2nx where nx is the number of cells in the x direction. For
all our tests, Dx ¼ Dy.

Table 4

Convergence study: relative error between coarse grid computations with cell size Dxcoarse and fine grid computations with cell size Dxfine
for velocity and free surface location at t ¼ 10 for standing wave problem

Dxcoarse Dxfine Eð10Þ Eu;L1ð10Þ Eu;maxð10Þ

1/64 1/128 11.0E) 5 12.0E) 5 3.7E) 3

1/128 1/256 2.0E) 5 3.1E) 5 1.2E) 3

The physical domain size is 1=2� 1=2. Dx is the mesh spacing which is 1=2nx where nx is the number of cells in the x direction. For
all our tests, Dx ¼ Dy.
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We also initialize the vapor pressure in each of these regions, and in a thin strip of one cell around each

region. Computing the volume in each separate vapor region is a well defined operation since two com-

putational cells can only belong to the same vapor region if they share either the same x coordinate or y
coordinate, and the level set function does not change sign between the two.

Table 5

Convergence study: relative error between coarse grid computations with cell size Dxcoarse and fine grid computations with cell size Dxfine
for velocity and free surface location at t ¼ 1:25 for axisymmetric inviscid rising bubble problem

Dxcoarse Dxfine Eð1:25Þ Eu;L1ð1:25Þ Eu;maxð1:25Þ

3/32 3/64 0.058 0.444 0.184

3/64 3/128 0.014 0.079 0.098

The physical domain size is 3� 6. Dx is the mesh spacing which is 3=nx where nx is the number of cells in the x direction. For all our
tests, Dx ¼ Dy.

Fig. 13. Inviscid, axisymmetric gas bubble rising in liquid; 128� 256 grid.
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In the event that a volume at a new time step, Vjðtnþ1Þ, contains points from more than one region at the

previous time step (i.e., a merger) or points from multiple volumes Vjðtnþ1Þ are contained in a single volume

VkðtnÞ at the previous time step (i.e., a break-up) then the pressure at the new time step is initialized as the

average of the underlying vapor pressures that were defined at the previous time step; otherwise, (18) is used

to initialize the new pressure using the volume and pressure at tn and the new volume at tnþ1.

For our first test problem, we have a spherical, adiabatic vapor bubble surrounded by incompressible

liquid. The initial radius of the bubble is Rð0Þ ¼ 0:164 and the initial pressure of the bubble is p0 ¼ 100:0.
The pressure at the outer boundaries of the computational domain is p1 ¼ 1. The computational domain

Table 6

Convergence study: relative error between coarse grid computations with cell size Dxcoarse and fine grid computations with cell size Dxfine
for velocity and free surface location at t ¼ 1:375 for axisymmetric inviscid rising bubble problem

Dxcoarse Dxfine Eð1:375Þ Eu;L1ð1:375Þ Eu;maxð1:375Þ

3/32 3/64 0.082 0.530 0.170

3/64 3/128 0.017 0.095 0.211

The physical domain size is 3� 6. Dx is the mesh spacing which is 3=nx where nx is the number of cells in the x direction. For all our
tests, Dx ¼ Dy.

Table 7

Maximum mass fluctuation of the bubble mass for axisymmetric inviscid rising bubble problem

Dx Maximum mass fluctuation 06 t6 1:75

3/32 0.02%

3/64 0.02%

3/128 0.007%

The physical domain size is 3� 6. Dx is the mesh spacing which is 3=nx where nx is the number of cells in the x direction. For all our
tests, Dx ¼ Dy.

Fig. 14. Radius versus time for oscillating adiabatic bubble in an incompressible liquid. Coarse grid resolution 32� 32. Domain size

32� 32. Six levels of adaptivity used.
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size is 32� 32. We have symmetric boundary conditions at r ¼ 0; 06 z6 32 and z ¼ 0; 06 r6 32. The

bubble center is at r ¼ 0; z ¼ 0. This is a standard test problem also done by Zhang et al. [36]. In our

computation, we use adaptive mesh refinement [29] with a coarse grid size of 32� 32 cells and a total of six

levels of adaptivity. In Fig. 14, we compare the radius of the bubble from our computations to the radius

computed from the Rayleigh–Plesset equation

Fig. 15. Radius versus time for adiabatic bubble which grows and then collapses in an incompressible liquid. Coarse grid resolution

32� 32. Domain size 32� 32. Six levels of adaptivity used.

Fig. 16. Inviscid, adiabatic, spherical gas bubble collapsing near a solid wall; 32� 32 coarse grid; 6 levels of adaptivity.
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RR00 þ ð3=2ÞðR0Þ2 ¼ p0
R0

R

� �3c

� 1;

and the modified ‘‘finite domain’’ Rayleigh–Plesset equation

1

1þ R=L
RR00 þ 1� R=3L

1þ R=L

 
þ 2ðR=LÞ4

3ð1þ R=LÞ4

!
ð3=2ÞðR0Þ2 ¼ p0

R0

R

� �3c

� 1;

LðRÞ ¼ ððL0 þ Rð0ÞÞ3 � R3
0 þ R3Þ1=3 � R;

where L0 ¼ 32. The results between our computations and the finite domain Rayleigh–Plesset equation are

almost identical.

For our second test problem, we again have a spherical, adiabatic vapor bubble surrounded by in-

compressible liquid. In this test problem, we place a solid boundary a distance of 1.5 units from the

Fig. 17. Inviscid, adiabatic, spherical gas bubble collapsing near a solid wall; 32� 32 coarse grid; 6 levels of adaptivity. Pressure

contours are displayed. Axis are labeled in terms of number of finest grid cells. Dx ¼ 32=2048 on the finest level.
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center of the bubble. The bubble will grow, and then collapse, a liquid jet forms which impinges upon

the solid boundary. The initial radius of the bubble is Rð0Þ ¼ 0:164 and the initial pressure of the bubble

is p0 ¼ 100:0. The pressure at the outer boundaries of the computational domain is p1 ¼ 1. The com-

putational domain size is 32� 32. We have symmetric boundary conditions at r ¼ 0; 06 z6 32 and solid

wall boundary conditions at z ¼ 0; 06 r6 32. The bubble center is at r ¼ 0; z ¼ 1:5. This is a test

problem also done by Zhang et al. [36]. In our computation, we use adaptive mesh refinement [29] with

a coarse grid size of 32� 32 cells and a total of six levels of adaptivity. In Fig. 15, we plot the radius of

the bubble as it expands and then collapses. The radius is measured in our computations from the
volume of the bubble. In Figs. 16 and 17 we show the pressure and interface profiles respectively as the

bubble collapses.

9. Conclusions

Our results demonstrate second order accuracy measured using the L1 norm for free surface flows with

surface tension. The improved accuracy over conventional first order ‘‘continuum’’ approaches allows us to
resolve computations using a grid resolution at least half the grid resolution as otherwise; this results in a

8:1 speedup for two-dimensional problems and a 16:1 speedup for three-dimensional problems.
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Appendix A

A.1. The CLSVOF advection algorithm

In this section, we describe how to advance the free surface using the coupled level set volume-of-fluid

(CLSVOF) advection algorithm. We shall describe the details for the two-dimensional case. The three-

dimensional algorithm follows analogously. We shall discretize our variables on a uniform grid with grid

spacing of Dx ¼ Dy. The discrete level set function /n
i;j and discrete volume fraction F ni;j are located at cell

centers. The motion of the free surface is determined by the velocity field derived from the equations for
incompressible two-phase flow. The discrete velocity field is defined at cell faces uiþ1=2;j and vi;jþ1=2, and

satisfies the discrete divergence free condition

DMACU ¼ uiþð1=2Þ;j � ui�ð1=2Þ;j

Dx
þ vi;jþð1=2Þ � vi;j�ð1=2Þ

Dy
:

A diagram of where the discrete variables are located in relation to the computational grid is shown in

Fig. 1. J represents the index of the computational cell closest to the top physical boundary.
The equations governing the interface motion are

/t þr � ðU/Þ � ðr �UÞ/ ¼ 0 ðA:1Þ

and

Ft þr � ðUF Þ � ðr �UÞF ¼ 0:
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We shall assume that the level set function /0
i;j is initialized as the signed normal distance from the initial

position of the free surface. The volume fraction function F 0
i;j shall be initialized as the fraction of liquid

fluid contained in cell ði; jÞ. In other words,

F 0
i;j ¼

1

DxDy

Z
Xij

Hð/ðx; y; 0ÞÞdxdy: ðA:2Þ

where

Xij ¼ ðx; yÞ jxi
�

6 x6 xiþ1 and yj6 y6 yjþ1

�
: ðA:3Þ

Given /n
i;j, F

n
i;j and U , we use a ‘‘coupled’’ second order conservative operator split advection

scheme in order to find /nþ1
i;j and F nþ1

i;j . Second order accuracy is achieved by reversing the order of the split-

ting at each time step. In other words, for one time step, one solves (A.1) in the x direction first, and in the

y direction next. For the next time step, the order is reversed, where one first solves in the y direction and then

in the x direction. This operator splitting algorithm has been shown to yield a second order accurate
advection algorithm [24,30].

The operator split algorithm for a general scalar s follows as:

~ssi;j ¼
sni;j þ ðDt=DxÞðGi�1=2;j � Giþ1=2;jÞ
1� ðDt=DxÞðuiþ1=2;j � ui�1=2;jÞ

; ðA:4Þ

snþ1
i;j ¼ ~ssi;j þ

Dt
Dy

ð ~GGi;j�1=2 � ~GGi;jþ1=2Þ þ ~ssi;jðvi;jþ1=2 � vi;j�1=2Þ; ðA:5Þ

where Giþ1=2;j ¼ siþ1=2;juiþð1=2Þ;j denotes the flux of s across the right face of the ði; jÞth cell and
~GGi;jþ1=2 ¼ ~ssi;jþ1=2vi;jþ1=2 denotes the flux across the top face of the ði; jÞth cell.

The scalar flux siþ1=2;j is computed differently depending on whether s represents the level set function /
or the volume fraction function F .

Computation of fluxes when s represents the level set function. For the case when s represents the level set
function / we have the following representation for siþ1=2;j when uiþ1=2;j > 0:

siþ1=2;j ¼ sni;j þ
Dx
2

1

�
� uiþ1=2;j

Dt
Dx

�
sniþ1;j � sni�1;j

Dx
ðA:6Þ

and when uiþ1=2;j < 0,

siþ1=2;j ¼ sniþ1;j �
Dx
2

1

�
þ uiþ1=2;j

Dt
Dx

�
sniþ2;j � sni;j

Dx
:

The above discretization is motivated by the predictor corrector method described in [5] and the ref-

erences therein. The scalar flux siþ1=2;j is obtained by extrapolating s in both space and time. Below, we show

an example for the case when uiþ1=2;j > 0,

siþ1=2;j � si;j þ
Dx
2
sx;ij þ

Dt
2
st;ij: ðA:7Þ

For an operator split algorithm we only solve for one direction at a time. This means, for example, that
we are solving

st þ usx ¼ 0:
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We can substitute st;ij ¼ �usx;ij into (A.7) in order to obtain,

siþ1=2;j � si;j þ
Dx
2

1

�
� u

Dt
Dx

�
sx;ij:

If we replace u with uiþ1=2;j and sx;ij with ðsniþ1;j � sni�1;jÞ=dx, then we recover (A.6).
Computation of fluxes when s represents the volume-of-fluid function. For the case when s represents the

volume-of-fluid function F we have the following representation for siþ1=2;j when uiþ1=2;j > 0:

siþ1=2;j ¼

R yjþ1=2

yj�1=2

R xiþ1=2

xiþ1=2�uiþ1=2;jDt
Hð/n;R

i;j ðx; yÞÞdxdy
� 


uiþ1=2;jDtDy
ðA:8Þ

and when uiþ1=2;j < 0,R yiþ1=2

yi�1=2

R xiþ1=2�uiþ1=2;jDt
xiþ1=2

Hð/n;R
iþ1;jðx; yÞÞdxdy

� 

juiþ1=2;jjDtDy

: ðA:9Þ

The volume-of-fluid flux siþ1=2;j represents the fraction of total fluid being advected across the right cell

face that is ‘‘dark’’ fluid; see Fig. 8. The term /n;R
i;j ðx; yÞ found in (A.8) and (A.9) represents the linear re-

construction of the interface in cell ði; jÞ. In other words, /n;R
i;j ðx; yÞ has the form

/n;R
i;j ðx; yÞ ¼ ai;jðx� xiÞ þ bi;jðy � yjÞ þ ci;j: ðA:10Þ

The coefficients ai;j, bi;j and ci;j are first chosen so that (A.10) represents the best fit line for the piece of
the zero level set passing through cell ði; jÞ. In other words, a, b and c minimize the following error:

Ei;j ¼
Z xiþ1=2

xi�1=2

Z yiþ1=2

yi�1=2

H 0ð/Þð/ � ai;jðx� xiÞ � bi;jðy � yjÞ � yi;jÞ2: ðA:11Þ

In order to solve for a, b, and c, we minimize the discretized error,

EDx
i;j ¼

Xiþ1

i0¼i�1

Xjþ1

j0¼j�1

wi0�i;j0�jH 0
�ð/i0 ;j0 Þð/i0;j0 � ai;jðxi0 � xiÞ � bi;jðyj0 � yjÞ � ci;jÞ2: ðA:12Þ

The discrete weights wr;s are chosen so that (A.12) is an approximation to (A.11). For the computations

we show, we have wr;s ¼ 16 for r ¼ s ¼ 0 and wr;s ¼ 1 for r 6¼ 0 or s 6¼ 0. We have tried other values for wr;s
with little effect on the accuracy of the computation. H 0

�ð/Þ represents the smoothed Heaviside function

with thickness �; in our computations, we always have � ¼
ffiffiffi
2

p
Dx. The resulting equations for a, b, c as a

result of minimizing (A.12) is a 3� 3 linear system.

The intercept ci;j is corrected so that the line represented by (A.10) cuts out the same volume in cell ði; jÞ
as specified by F ni;j. In other words, the following equation is solved for ci;j:Z yiþ1=2

yi�1=2

Z xiþ1=2

xi�1=2

Hðai;jðx� xiÞ þ bi;jðy � yjÞ þ ci;jÞdy dx ¼ F ni;j: ðA:13Þ

Since H is a Heaviside function defined as Hð/Þ ¼ 1 if / > 0 and Hð/Þ ¼ 0 otherwise, we solve (A.13) by
use of the Newton iteration method. We remark that the algorithm is simplified by first rotating the grid

axis so that the normal represented by ai;j and bi;j points away from the lower left hand corner of the ði; jÞ
computational cell. The coefficients ai;j, bi;j and ci;j are also rescaled so that a2i;j þ b2i;j ¼ 1 and the new in-

tercept represents the normal distance to the lower left hand corner of the computational cell.

M. Sussman / Journal of Computational Physics 187 (2003) 110–136 133



The integrals in (A.8) and (A.9) are evaluated by finding the volume cut out of the region of integration

by the line represented by (A.10).

The scalar flux ~ssi;jþ1=2 is computed in the same manner as siþ1=2;j. For the case when s represents the level
set function /, we have the following representation for ~ssi;jþ1=2 when vi;jþ1=2 > 0:

~ssi;jþ1=2 ¼ ~ssi;j þ
Dy
2

1

�
� vi;jþ1=2

Dt
Dy

�
~ssi;jþ1 � ~ssi;j�1

Dy
ðA:14Þ

and when vi;jþ1=2 < 0,

~ssi;jþ1=2 ¼ ~ssiþ1;j �
Dy
2

1

�
þ vi;jþ1=2

Dt
Dy

�
~ssi;jþ2 � ~ssi;j

Dy
: ðA:15Þ

For the case when ~ss represents the volume-of-fluid function F we have the following representation for
~ssi;jþ1=2 when vi;jþ1=2 > 0:

~ssi;jþ1=2 ¼

R yiþ1=2

yiþ1=2�vi;jþ1=2Dt

R xiþ1=2

xi�1=2
Hð ~//R

i;jðx; yÞÞdxdy
� 


vi;jþ1=2DtDx
ðA:16Þ

and when vi;jþ1=2 < 0,

~ssi;jþ1=2 ¼

R yiþ1=2

yiþ1=2�vi;jþ1=2Dt

R xiþ1=2

xi�1=2
Hð ~//R

i;jðx; yÞÞdxdy
� 


jvi;jþ1=2jDtDx
ðA:17Þ

The linear reconstruction ~//R
i;jðx; yÞ found in (A.16) and (A.17) has an analogous form as (A.10),

~//R
i;jðx; yÞ ¼ ~aai;jðx� xiÞ þ ~bbi;jðy � yjÞ þ ~cci;j: ðA:18Þ

After /nþ1 and F nþ1 have been updated according to (A.4) and (A.5) we ‘‘couple’’ the level set function to

the volume fractions by assigning the level set function /nþ1 to be the exact signed normal distance to the

reconstructed interface. The reconstructed interface consists of the piecewise linear line segments defined by

(A.18) along with the portions of the cell boundaries that make up the difference between neighboring line

segments (see Fig. 9). The algorithm to find the signed normal distance in a strip of K cells about the

reconstructed interface is as follows:
1. Truncate the volume fractions:

F nþ1
i;j ¼

0 if F nþ1
i;j 6 0 or /nþ1

i;j < �Dx;

1 if F nþ1
i;j P 1 or /nþ1

i;j > Dx;
F nþ1
i;j otherwise:

8><
>: ðA:19Þ

2. Tag all computational cells ði; jÞ.
3. In each computational cell ði; jÞ, check to see if

/nþ1
i;j /nþ1

i0 ;j0 6 0 ðA:20Þ

for some ji� i0j6 1, jj� j0j6 1; if there is a ði0; j0Þ such that (A.20) is satisfied, then perform the following

steps:

(a) if

0 < F nþ1
i;j < 1 ðA:21Þ
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and

/nþ1
i;j ð/nþ1

i;j þ /nþ1
i0;j0 Þ6 0 for some ji� i0j6 1; jj� j0j6 1; ðA:22Þ

then construct the linear reconstruction /nþ1;R
i;j ðx; yÞ (A.10),

/nþ1;R
i;j ðx; yÞ ¼ ai;jðx� xiÞ þ bi;jðy � yjÞ þ ci;j: ðA:23Þ

If (A.21) or (A.22) is not satisfied then mark all of cell ði; jÞ face centroids and corners as either ‘‘po-

sitive’’ or ‘‘negative’’ depending on the sign of /nþ1
i;j .

If both (A.21) and (A.22) are satisfied, mark all of cell ði; jÞ face centroids and corners according to the

sign of /nþ1;R
i;j ðx; yÞ evaluated at the face centroids and corners.

(b) For each cell ði0; j0Þ, ði0 � iÞ2 þ ðj0 � jÞ2 < K2 and ði0 � iÞ2 þ ðj0 � jÞ2 < ðj/nþ1
i0;j0 j=Dxþ 2Þ2 do the fol-

lowing steps; we refer the reader to the diagram in Fig. 2.

(i) Determine the closest point on the boundary of cell ði; jÞ to ðxi0 ; yj0 Þ (this point will always either be
at the corner or face centroid of the cell boundary). If the sign of the level set function at the closest

point is opposite of/nþ1
i0;j0 , then set d, the shortest distance associatedwith cells ði; jÞ and ði0; j0Þ, equal

to the distance from ðxi0 ; yj0 Þ to the closest point on the boundary of cell ði; jÞ. If the sign of the level
set function at the closest point is the same as /nþ1

i0 ;j0 and (A.21) and (A.22) are both satisfied, then

let d be the shortest distance between ðxi0 ; yj0 Þ and the line segment represented by /nþ1;R
i;j ðx; yÞ.

(ii) Update /nþ1
i0;j0 using d:

/nþ1
i0;j0 ¼ signð/nþ1

i0 ;j0 Þd if d < j/nþ1
i0 ;j0 or cell ði0; j0Þ is tagged;

/nþ1
i0 ;j0 otherwise:

(

(iii) Untag cell ði0; j0Þ.
4. For cells ði; jÞ which are still tagged, we have

/nþ1
i;j ¼ �KDx� Dx if /nþ1

i;j < 0;

KDxþ Dx if /nþ1
i;j > 0:

(
ðA:24Þ

Remarks:
• The coupling between the level set function / and the volume-of-fluid function F occurs when comput-

ing the normal of the reconstructed interface (A.10) and also when assigning the level set function with

the exact signed normal distance to the reconstructed interface.

• In order to find the shortest distance between the cell center ði0; j0Þ and the line segment represented by

/nþ1;R
i;j ðx; yÞ (A.23), one first re-scales (A.23) so that a2i;j þ b2i;j ¼ 1. The distance is then d ¼ /nþ1;R

i;j ðxi0 ; yj0 Þ.
The point xc ¼ ðxi0 ; yj0 Þ � dr/nþ1;R is the point where the normal extension from ði0; j0Þ to /nþ1;R

i;j ðx; yÞ inter-
sects /nþ1;R

i;j ðx; yÞ. If xc falls outside of cell ði; jÞ, then the shortest distance between ði0; j0Þ and /nþ1;R
i;j ðx; yÞ

must be the distance from ði0; j0Þ to one of the end points of the line segment represented by /nþ1;R
i;j ðx; yÞ.
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